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Quantum field theories on algebraic curves.
I. Additive bosons

L. A. Takhtajan

Abstract. Using Serre’s adelic interpretation of cohomology, we develop
a ‘differential and integral calculus’ on an algebraic curve X over an alge-
braically closed field k of constants of characteristic zero, define algebraic
analogues of additive multi-valued functions on X and prove the corre-
sponding generalized residue theorem. Using the representation theory of
the global Heisenberg algebra and lattice Lie algebra, we formulate quan-
tum field theories of additive and charged bosons on an algebraic curve X.
These theories are naturally connected with the algebraic de Rham theo-
rem. We prove that an extension of global symmetries (Witten’s additive
Ward identities) from the k-vector space of rational functions on X to the
vector space of additive multi-valued functions uniquely determines these
quantum theories of additive and charged bosons.

Keywords: algebraic curves and algebraic functions, adeles, additive
multi-valued functions, additive Ward identities, Heisenberg algebra,
current algebra on an algebraic curve, generalized residue theorem, Fock
spaces, quantum theories of free bosons on an algebraic curve, expectation
value functional.

8§ 1. Introduction

The classical theory of compact Riemann surfaces has an algebraic counterpart,
the theory of algebraic functions of one variable over an arbitrary field of constants,
as developed by Dedekind and Weber. The introduction of differentials in the alge-
braic theory by Artin and Hasse and the definition of idéles and adeles by Chevalley
and Weil opened the way for the application of infinite-dimensional methods to the
theory of algebraic curves. Classical examples of using such methods are given by
Serre’s adelic interpretation of cohomology and the Riemann—-Roch theorem [1] and
Tate’s proof of the general residue theorem [2]. In 1987, Arbarello, de Concini
and Kac [3] interpreted Tate’s approach in terms of central extensions of infinite-
dimensional Lie algebras and gave a new proof of Weil’s celebrated reciprocity law
using the infinite wedge representation.

In 1987, Kazhdan [4] and Witten [5] proposed an adelic formulation of the
quantum field theory of one-component free fermions on an algebraic curve, and
Witten [6] outlined an approach to other quantum field theories. Let X be an

This paper was written with the financial support of NSF (grants nos. DMS-0204628, DMS-
0705263 and DMS-1005769).
AMS 2010 Mathematics Subject Classification. 81R10, 14H81.
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algebraic curve over an algebraically closed field k of constants, and let L be a spin
structure on X. We write M(L) for the infinite-dimensional k-vector space of
meromorphic sections of L over X, and Mp for the completions of M(L) at all
points P € X. In outline, the approach of [4], [5] can be described in terms of the
following objects.

1) The global Clifford algebra Clx on X: a restricted direct product over all
points P € X of the local Clifford algebras Clp, which are related to the k-vector
spaces Mp by the residue maps Resp(fg).

2) The adelic Clifford module (the global fermion Fock space §x): a restricted
Z/2Z-graded tensor product of the local Clifford modules §p over all P € X.

3) The ‘expectation value’ functional: a linear map (-): Fx — k satisfying the
condition

(f-uy=0 VfeM(L)CCly, u € §fx, (1)

where the vector space M(L) is embedded diagonally in the global Clifford alge-
bra Clx.

In this purely algebraic formulation of one-component free fermions on an alge-
braic curve, the products of the field operators at points P € X are replaced by
the vectors v = ®pexup € Fx, and the linear map (-) is a mathematical way
of defining the correlation functions of quantum fields. At the physical level of
rigour, these functions are introduced by the Feynman path integral. The vector
space M(L) acts on §x by global symmetries, and the invariance of the quantum
theory of free fermions with respect to these symmetries is expressed by the quan-
tum conservation laws (1), also known as the additive Ward identities. It is proved
in [5], [6] that if the spin structure L has no global holomorphic sections, then the
additive Ward identities uniquely determine the expectation value functional (- ).
The relations (1) are compatible with the global residue theorem on X:

> Resp(fdg) =0,  f,g€ M(L).

PeX

Witten [6] developed the basics of quantum field theories associated with current
algebras on algebraic curves and mentioned the theories associated with loop groups
on algebraic curves. The global symmetries of these theories are respectively given
by the rational maps of the algebraic curve X to a finite-dimensional semisimple
Lie algebra over k and the rational maps of X to the corresponding Lie group.
In the latter case, the analogues of quantum conservation laws (1) were called
multiplicative Ward identities in [6]. It was emphasized in [6], § IV that if the genus
of X is greater than zero, then the Ward identities do not uniquely determine the
expectation value functional (-), even in the Lie-algebraic case. Thus the main
problem in the construction of quantum field theories on an algebraic curve is to
find additional conditions which would uniquely determine the linear functional (- ).

When X is a Riemann surface (that is, an algebraic curve over the field C
of complex numbers, equipped with the complex topology), the usual physicist’s
representation of correlation functions is given by the Feynman path integral, which
uses the Lagrangian formulation of the theory. This approach is not applicable in
the case when X is an algebraic curve over an arbitrary field of constants. Hence
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one needs other ways to define the correlation functions. The basic example is
given by the ‘integrable’ case, when the expectation value functional is uniquely
determined by the global symmetries (and hence so are all correlation functions).

In [7] we gave a solution of the problem of the unique determination of the expec-
tation value functional for the simplest scalar theories, when the finite-dimensional
Lie algebra is the Abelian Lie algebra k, and the corresponding Lie group is the
multiplicative group k* = k'\ {0}. We call these quantum field theories the theories
of additive and multiplicative bosons respectively. The solution suggested in [7]
involves enlarging the global symmetries by considering the algebraic analogue of
the vector space of additive multi-valued functions on a Riemann surface (analogues
of the classical Abelian integrals of the second kind with zero a-periods). Although
the classical theory of Abelian integrals was already developed by Riemann (see,
for example, [8] and [9] for a modern exposition), the corresponding algebraic the-
ory (integral calculus on algebraic curves) has not been fully developed. In this
paper we partially fill this gap in the case when the field k of constants has char-
acteristic zero and give an explicit construction of the quantum field theories of
additive bosons on an algebraic curve. These theories are naturally connected with
the algebraic de Rham theorem, and their global symmetries form a vector space
of additive multi-valued functions; see Theorems 6, 7 for precise statements. Our
construction of quantum field theories on algebraic curves may be regarded as an
algebraic analogue of the geometric realization of conformal field theories on Rie-
mann surfaces [10]. The quantum field theory of multiplicative bosons requires an
algebraic analogue of the group of multiplicative multi-valued functions on a Rie-
mann surface (analogues of the exponentials of Abelian integrals of the third kind
with zero a-periods). We plan to discuss the analogue of this group and the corre-
sponding multiplicative Ward identities in a separate publication.

Here is a more detailed description of the contents of the paper. In §2 we
recall the necessary basic facts from the theory of algebraic curves. Namely, let X
be an algebraic curve of genus g over an algebraically closed field k£ of constants,
F = k(X) the field of rational functions on X, and Fp the corresponding local fields
(the completions of F' with respect to the regular valuations vp corresponding to
the discrete valuation rings at the points P € X). In §2.1 we introduce the ring of

adeles
Ax = ][ Fr
PeX

as a restricted direct product of the local fields Fp and describe Serre’s adelic
interpretation of cohomology. In § 2.2 we recall the definitions of the F-module Q}: /k
of Kahler differentials on X, the corresponding A x-module 2 x of differential adéles,
the differential map d: Ax — Qx and the residue map Res: Qx — k. In §2.3 we
describe Serre duality and the Riemann—-Roch theorem.

In § 3, assuming that the field k of constants is of characteristic zero, we recall the
differential calculus on an algebraic curve X (the structural theory of the k-vector
space Q}; Ik of Kéhler differentials on X') and develop a corresponding integral cal-

culus. Namely, in §3.1 we follow [11] and [12] and endow the k-vector space Q)
of differentials of the second kind (that is, differentials on X with zero residues)
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with a skew-symmetric bilinear form

(Wi, w2)x = Z ResP(d*u)1 wa), wi,ws € (2nd)
Pex

The main result of the differential calculus is Theorem 4, an algebraic version
of de Rham’s theorem. Theorem 4 goes back to Chevalley and Eichler and, for an
algebraic curve X of genus g > 1, states® that the 2g-dimensional k-vector space
Qnd) /dF is a symplectic vector space with symplectic form (, )x. Moreover, for
every choice of a non-special effective divisor D = Py + --- + P, of degree g on X
and uniformizers t; at P;, there is an isomorphism

Q) /dF ~ QD N QL (2D).

The space QD) N Q},/k(ZD) has a natural symplectic basis {6;,w;}7_;, where
0; (resp. w;) are differentials of the first (resp. second) kind with the following
properties. The 6; vanish at all points P}, j #1, and 6; = (14 O(t;))dt; at P;, while
the w; are regular at all points P;, j #1, and w; = (ti_2 + O(t;))dt; at P;. Hence the
0; (resp. w;) are algebraic analogues of the differentials of the first kind with normal-
ized a-periods (resp. differentials of the second kind with second-order poles, zero
a-periods and normalized b-periods) on a compact Riemann surface. The a-periods
of w € Q") are algebraically defined as (w,w;)x, i = 1,...,g, and we write Q(()an)
for the isotropic subspace of Q(2*®) consisting of all differentials of the second kind
with zero a-periods. By Proposition 1 we have

OF Y =k @@k w, @ dF, @

In §3.1 we also introduce an algebraic notion of additive multi-valued functions
on X. By definition, the k-vector space of additive multi-valued functions is a sub-
space A(X) of the adele ring Ax satisfying F' C A(X) and dA(X) C QlF/k and
the additional condition that if @ € A(X) and da = 0, then a = ¢ € k. The main
result of the integral calculus for differentials of the second kind with zero a-periods
is the explicit construction of the vector space A(X, D) in Example 1. This space
plays a fundamental role in the theory of additive bosons. It is parametrized by
the choices of a non-special divisor D = P; 4 --- 4+ P, of degree g on X, local
uniformizers ¢; at the points P; and solutions of the equations dn; = w; in Ay (with
any fixed choice of the local additive constants). It is defined as

AX;D)=k-m& - ®k-n,&F C Ax,

and possesses the property d(A(X; D)) = Qégnd). We finally introduce the additive
multi-valued functions ngl) € A(X; D) with a single pole of order n at P € X and
prove (see Lemma 1) that every rational function f € F has a unique partial fraction
expansion, the partial fractions being these ngl). We also explain the difficulties
arising in an attempt to define algebraic analogues of multiplicative multi-valued

functions.

IThe case g = 0 is trivial.
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In §4 we formulate the local quantum field theories of additive and charged
bosons. The local theory of additive bosons is associated with the representation
theory of the local Heisenberg algebra gp, a one-dimensional central extension of the
Abelian Lie algebra Fp, P € X, by the 2-cocycle cp(f,g9) = —Resp(fdg). In §4.1
we introduce the highest-weight representation p of gp on the local Fock space % p
and define the corresponding contragradient representation pY of gp on the dual
local Fock space Zp¥. In §4.2 we define a local lattice algebra [p as a semi-direct
sum of the local Heisenberg algebra gp and the Abelian Lie algebra k[Z], the group
algebra of Z. The corresponding irreducible highest-weight [p-module is the local
Fock space #Bp of ‘charged bosons’ (the tensor product of k[Z] and #p). The
material in §§4.1, 4.2 is essentially standard (see [13], [14]).

In § 5 we finally state the global quantum field theories, starting in §5.1 with the
theory of additive bosons on an algebraic curve X. This theory is naturally con-
nected with the global Heisenberg algebra gx, a one-dimensional central extension
of the Abelian Lie algebra gl (Ax) = Ax by the 2-cocycle cx = ) pc x cp. Since
the subspace Qéznd) is isotropic with respect to the bilinear form (, )x, we have

cX(a17a2)=0 val,CLQE.A(X,D)CAx. (3)

This may be regarded as a generalized residue theorem for additive multi-valued
functions. The irreducible highest-weight module of the global Heisenberg alge-
bra gx is the global Fock space %, a restricted tensor product of the local Fock
spaces Z#p over all points P € X. It may be regarded as the space of observ-
ables of the quantum theory of additive bosons on X. In Theorem 6 we prove that
there is a unique normalized expectation value functional (-): Fx — k, uniquely
characterized by the global symmetries

(p(a)v) =0 Vae€ A(X;D), veEFx. (4)

Here A(X; D) C Ax is the vector space of additive multi-valued functions on X
defined in §3.1, and p: gx — End % is the corresponding representation of the
global Heisenberg algebra. Specifically, we show in Theorem 6 that

(v) = (Qx,v) Vv e Fx,

where Qx € .Zy is a vector in the space dual to Fx satisfying an infinite system
of equations
Qx -pY(a) =0 Vae A(X,D). (5)

The vector 2x is given by an explicit formula (Theorem 6), which encodes
the analogues of all correlation functions of quantum additive bosons on X. The
compatibility of the system (5) is based on the reciprocity law (proved in Lemma 1)
for the differentials of the second kind with zero a-periods.

The additive Ward identities (4) are also compatible with the generalized residue
theorem. Namely, since [p(z), p(y)] = ex(x,y)I for z,y € Ax, where I is the
identity operator on Fx, we get from (4) that for aq,as € A(X, D),

0= ((p(a1)p(az) = plaz)p(ar))v) = ex(ar,az)(v)  Vve Fx,
which yields (3).
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In §5.2 we define a global lattice algebra [x as a semi-direct sum of the global
Heisenberg algebra gx and the Abelian Lie algebra k[Divo(X)] with generators
ep, D € Divo(X), where k[Divo(X)] is the group algebra of the additive group
Divg(X) of divisors of degree 0 on X. Its irreducible highest-weight module is
the global Fock space Zx of charged bosons, which is the tensor product of the
group algebra k[Divo(X)] and the Fock space .Zx of additive bosons. The main
result of §5.2 is Theorem 7 on the existence and uniqueness of an expectation value
functional (- ): Zx — k which is normalized with respect to the action of the group
algebra k[Divo(X)] and satisfies the additive Ward identities (4) with respect to
the action of the global symmetries (additive multi-valued functions in A(X, D))
on the global Fock space #Bx. This functional is of the form (v) = (QX, v), where
the vector Qx € P, in the space dual to Ay is given by an explicit formula (see
Theorem 7), which encodes all correlation functions of quantum charged additive
bosons on X. In § 5.3, following a suggestion of the referee, we give a more invariant
formulation of Theorem 6.

I am grateful to the referee for his careful reading of the manuscript, constructive
criticism, remarks, and valuable suggestions.

§ 2. Basic facts

Here we recall necessary facts from the theory of algebraic curves. This material
is essentially standard (see [1], [8], [11]).

2.1. Definitions. An algebraic curve X over an algebraically closed field k is an
irreducible non-singular one-dimensional projective variety over k. It is equipped
with the Zariski topology. The field F = k(X) of rational functions on X is
a finitely generated extension of k of transcendence degree 1. Conversely, every
finitely generated extension of k of transcendence degree 1 corresponds to a unique
(up to isomorphism) algebraic curve over k. Closed points P on X correspond to
discrete valuation rings Op (subrings of F). The rings Op for all P € X form
a sheaf of rings on X: the structure sheaf O, a subsheaf of the constant sheaf F.
For every point P € X let vp be the regular discrete valuation of F' over k
corresponding to the discrete valuation ring Op. The completion of F' with respect
to vp is a complete closed field Fp with valuation ring Op, which is the completed
local ring at P with prime ideal p and residue class field kK = Op/p. The ring Ax
of adeles of X is
Ax =[] Fr,
PeX
the restricted direct product over all points P € X of the local fields Fp with
respect to the local rings Op. By definition,

r={zplpex € Ax

if zp € Op for all but finitely many P € X. The field F is contained in all local
fields Fp and is diagonally embedded in A x:

F> f—{flp}trex € Ax.
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The divisor group Div(X) of X is the free Abelian group generated by the points

P € X. By definition,
D= np-PeDiv(X)
PeX
if np = vp(D) € Z and np = 0 for all but finitely many P € X. Divisors of the
form
(/)= vp(f)- P € Div(X),
PeX

where f € F* = F \ {0}, are called principal divisors. They form a subgroup
PDiv(X) ~ F*/k* of Div(X). The degree of a divisor D is

deg D = Z np = Z vp(D) € Z,

PeX PeX

and we have deg(f) =01if f € F*. A divisor D is said to be effective if vp(D) > 0
for all P € X. By definition, Dy and Ds are linearly equivalent (D; ~ Do)
if Dy — Dy = (f) for some f € F*. The equivalence classes of divisors form
the divisor class group Cl(X) = Div(X)/PDiv(X).
For every divisor D we define a subspace Ax (D) of the k-vector space Ax by
putting
Ax (D) ={z € Ax:vp(zp) > —vp(D) VP € X}.

The ring Ax of adeles is a topological ring with the product topology. A base of
neighbourhoods of 0 is given by the subspaces Ax (D), D € Div(X), and Ax is
a k-vector space with linear topology in the sense of Lefschetz ([15], Ch.II, §6).
Since the subspaces Ax (D) are linearly compact, Ax is locally linearly compact.
The k-vector space F = k(X) is discrete in Ax and the quotient space Ax/F is
linearly compact ([8], Appendix, §3).

For every divisor D we have an algebraic coherent sheaf Ox (D) on X whose
stalk at any point P € X is

Ox(D)p ={f € F:vp(f) = —vp(D)}.

Linearly equivalent divisors correspond to isomorphic sheaves. We denote the
Cech cohomology groups of the sheaf Ox (D) by H*(X,Ox(D)) (these are
finite-dimensional vector spaces over k, trivial for i > 1) and put h%(D) =
dimy, H(X,Ox(D)). The zero divisor D =0 corresponds to the structure sheaf Ox.
In this case, h°(0) = 1 and h'(0) = g is the arithmetic genus of X. We have

H°(X,0x(D))=Ax(D)NF,  HY(X,0x(D))~Ax/(Ax(D)+F),
which is Serre’s adelic interpretation of cohomology ([1], Ch.II, §5).

2.2. Differentials and residues. Let R be a ring over k. The module Q}{/k of
Kahler differentials of R is the universal R-module with the property that there is
a k-linear map d: R — Q}, /i satisfying the Leibniz rule

d(fg) = fdg + gdf, f,g€R.
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When R = F is the field k(X) of rational functions on an algebraic curve X,
Q5 /k is a one-dimensional vector space over F'. Let t € F be a local coordinate
at P in the Zariski topology, that is, a rational function on X with vp(t) = 1. Then
dt is a basis of the F-vector space Q}, ne that is, every Kéhler differential can be
written as w = fdt for some f € F. The order of w € QL ,, at P is defined by

vp(w) = vp(f).

It is independent of the choice of the local coordinate at P and determines a valu-
ation on Q7 Ik

F/k

The family of Op-modules QO /k for all points P € X forms an algebraic coher-
ent sheaf 0, a subsheaf of the constant sheaf QL Qp/p- Moreover,

Q}?/k = Qlop/k ®0P F.

When k has characteristic 0, the Fp-module Q}VP Jk is an infinite-dimensional
vector space over Fp for every point P € X (the map d is not continuous with
respect to the p-adic topology on Fp). Following [1], Ch.II, § 11, we define

Q}vp/k = Q}Vp/k/Q,

where Q = (1,5,p"d(Op) and, therefore, dimp, ﬁ}m s = 1. The resulting Fp-
module QF Jk is the completion of the F-module QF/k with respect to the val-

uation vp. The completion of the Op-module QO Jk is the Op-module Qo Jk
and

Q}:‘P/k = Q}Qp/k ®OP FP
We define the A x-module Qx of differential adeles of the sheaf 2 by the formula
Qx = [] Qi
Pex

This is the restricted direct product over all points P € X of the Fp-modules Ol Fp /k
with respect to the Op-modules Q Op k" The F-module QF/k is contained in all
Fp-modules Ol Fp/k and is diagonally embedded in Qx:

QF/k Swr {w|p}pex € Nx.

The k-vector space 2x has a linear topology with a base of neighbourhoods of zero
given by the subspaces Qx (D) for all D € Div(X):

Qx(D) = {w = {wp}pex € Qx: Up(wp) > —UP(D) VP e X}

This topological space is locally linearly compact. The maps d: Fp — Q}P Jk for
all P € X determine a continuous map d: Ax — Qx satisfying the Leibniz rule.

Remark 1. The Ax-module 2x is essentially the set of ‘principal part systems of
degree 1’ on X in the sense of Eichler (see [12], Ch.III, §5.2).
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Take w € (Z}JPM and let ¢ be a local parameter of the field Fp, so that dt is

a basis of the Op-module ﬁép/k. The residue map Resp: Q}P/k — k is defined as
+o0
Resp(w) =c¢_1, where w = Z cpt™ dt,
n>—oo

and the symbol n > —oco means that the summation is taken over only finitely many
negative values of n. The definition of the residue is independent of the choice of the
local parameter. The residue map is continuous with respect to the p-adic topology
on ﬁ},P /k and the discrete topology on k. The local residue maps Resp give rise to
the global residue map Res: Qx — k,

Resw = Z Resp(wp), w={wplpex € Nx.
PeX
The global residue map is well defined, continuous and possesses the following

fundamental property.

Theorem 1 (the residue formula). For every w € Q}D/k,

Resw = Z Resp(w|p) = 0.
PeX

2.3. Serre duality and the Riemann—Roch theorem. We put
Qo (D) = gy, N Qx (D) = {w € Qs vp(w) = —vp(D) VP € X}
and define the residue pairing (, ): 2x @ Ax — k by the formula

(w,z) = Z Resp(xpwp), where we Qyx, z€Ax.
pPeX
The residue pairing has the following properties:
Pl) (w,z)=0ifw e Q}/k and x € F,
P2) (w,2) =0if w € Qx(—D) and z € Ax (D).
It follows from P1), P2) that for every D € Div(X) the formula «(w)(z) = (w, x)
determines a k-linear map

12 (=D) = (Ax/(Ax(D) + F))",

where VV = Hom(V, k) is the topological dual of a k-vector space V with linear
topology.

Theorem 2 (Serre duality). For every D € Div(X), the map @ is an isomorphism.
Hence the finite-dimensional k-vector spaces Q}?/k(—D) and Ax /(Ax(D)+F) are
dual with respect to the residue pairing.
Corollary 1 (the strong residue theorem).

(i) An adéle © € Ax corresponds to a rational function on X under the embed-
ding F — Ax if and only if (w,x) =0 for all w € Q},/k.

i ifferential adele w € 2x corresponds to a Kahler differential on X under
ii) A diff l adeél Q d Kahler diff lon X und
the embedding Q},/k — Qx if and only if (w, f)=0 forall f€F.
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Proof. Suppose that the condition in (i) holds. It follows from Serre duality that
x € Ax(D) + F for every D € Div(X) and, since F N Ax(D) =0 for D < 0, we
have z € F. To prove (ii), take wy € Q},/k, wo # 0. Putting x = w/wy € Ax,
we have 0 = (w, f) = (fwo, z) for all f € F, whence x € F by part (i). O

Remark 2. The strong residue theorem is stated in a slightly different form in [12],
Ch.III, §5.3.

For w € Q}/k we put

(w) = Z vp(w) - P € Div(X).

pPeX

Since dimp Q] /i = 1, all divisors (w) are linearly equivalent and determine a divisor
class K € Cl(X), the canonical class of X. The following result is obtained by
combining the Riemann—Roch theorem for the Euler characteristic of a divisor D:

X(D) = h®(D) — h'(D) =deg D +1 g,
with Serre duality and the adelic interpretation of cohomology.

Theorem 3 (Riemann—Roch theorem). For every D € Div(X) we have
R®(D) — h°(K — D) =deg D +1 — g.

An effective divisor D on X is said to be non-special if h°(K — D) = 0. It
follows from the Riemann—Roch theorem that an effective divisor D of degree g is
non-special if and only if h°(D) = 1. In other words, the only rational functions
whose poles are contained in an effective non-special divisor of degree g are the
constant functions.

§ 3. Differential and integral calculus

From now on we assume that the algebraically closed field k has characteristic 0
and the algebraic curve X has genus g > 1.

3.1. Differentials of the second kind and ‘additive functions’. Following
the classical terminology, we call a Kéhler differential w € Q}D /i @ differential of the
second kind if Respw = 0 for all P € X. The k-vector space Q"D of differentials
of the second kind on X carries a canonical skew-symmetric bilinear form (, )x,
which is defined as follows. For every w € Q") let = {zp}pcx € Ax be an
adele satisfying the equality

dxp=w|P VP e X.

For every P € X there is a unique (up to an additive constant in k) element
xp € Fp with this property, and we have xp € Op for all but finitely many P € X.
We define z = d~'w and put

(w1, w2)x = Z Resp(d™'wy wy), Wi, wy € Q)
PeX
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The bilinear form (, )x is independent of the choice of the additive constants in
the definition of d=! and is skew-symmetric. When X is a Riemann surface, the
bilinear form (, )x corresponds to the standard pairing in the cohomology under
the isomorphism Q") /dF ~ H1. (X) (see [16], Ch.III, §5).

The infinite-dimensional k-vector space Q(2"d) has a g-dimensional subspace
Qs = QL /k(O) of the differentials of the first kind. The infinite-dimensional sub-
space QIS dF of QD) is isotropic with respect to the bilinear form (, )x. Since
there is no canonical choice of the isotropic complementary subspace to Q) ¢ dF
in Q) the exact sequence

0 — Qst) @ dF — Q(2nd) _, Q(znd)/(Q(lst) @ dF) —0

does not split canonically. Nevertheless we have the following fundamental result
(see [11], Ch. VI, §8 and [12], Ch.III, §§5.3, 5.4), which may be regarded as an
algebraic analogue of de Rham’s theorem.

Theorem 4. (i) The restriction of the bilinear form (,)x to Q2 /dF is non-
degenerate and
dimg Q@D /dF = 2g.

(ii) For every effective non-special divisor D on X of degree g there is an iso-

morphism
Qe /dF ~ QP N QL (2D).
iii) Let D = Py + --- + P, be a non-special divisor with distinct points. Then
g
every choice of local uniformizers t; at P; determines a symplectic basis {0;,w;}7_;
of the k-vector space Q) N QL (2D) with respect to the symplectic form (, )x:
F/k

(0;,0)x = (ws,w;)x =0, Oi,wj)x =0dij, 4,j=1,...,9.

This basis consists of differentials 6; of the first kind and differentials w; of the
second kind which are uniquely determined by the conditions

vp; ((9] — (Sijdti) >0 and vp; (wj — 6ijti_2dti) > 0,

where 1,7 =1,...,¢.
iv) The subspace k-wi @ - ® k- w, is an isotropic complement of QUsY) ¢ dF
(iv) g

in Q2nd)

Proof. Let (W)oo = n1Q1 + --- + m@Q; be the polar divisor of w € Q). Since
chark = 0, for every @); there is an f; € F' such that vg,(w — df;) > 0. We define
x ={zp}pcx € Ax by the formulae

fi|Q,7 P:Qia i:17"'7l7
rp = °
0, P4Qi i=1,. .. 1L

Since D is a non-special divisor of degree g, we have Q},/k(D) = {0} and, by
Serre duality, Ax(D) + F = Ax. Thus there is an f € F with the property
vp(f—x) > —vp(D) for all P € X, whence (w—df) > —2D. Since D is non-special,
such an f is unique. This proves part (ii).
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To prove (i), we observe that by the Riemann—Roch theorem,
dimy Qf . (2D) =3g — 1, dimy Qf (D) = 29 — 1.

Let QG be the k-vector space of differentials of the third kind. This subspace
of QF, /K 1 formed by the differentials with only simple poles. Since Q) NQGrd) —

QU and QG N QL L (2D) = Q) (D), we conclude that
dim Q™) N Qp , (2D) + dimyg (D) = dimy, Q. (2D) + dimy QU
Using (ii), we have
dimg Q@ /dF = (3g — 1) — (29 — 1) + g = 2g.
To complete the proof, we define a k-linear map
L: QYN QL (2D) — k%

by the formula L(w) = (a1 (w), ..., a4(w), f1(w),. .., Bg(w)), where

vp, (w— (ai(w)t; ? + Bi(w)dt;)) > 0, i=1,...,9.

Since D is non-special, L is an injective map and hence an isomorphism. The
differentials w; and 6, are obtained by choosing the only non-zero component of L
to be a; = 1 and §; = 1 respectively. O

Remark 3. The choice of a non-special effective divisor D = P, +--- 4+ P, on X
with distinct points P; and uniformizers ¢; may be regarded as an algebraic ana-
logue of the choice of a-cycles on a compact Riemann surface of genus g > 1.
Correspondingly, the differentials ; are analogues of differentials of the first kind
with normalized a-periods, and the differentials w; are analogues of differentials of
the second kind with second-order poles, zero a-periods and normalized b-periods.
The symplectic property of the basis {6;,w;};_; is an analogue of the reciprocity
law for differentials of the first kind and the second kind (see [8], Ch.5, §1 and [9],
Ch. VI, §3).

Remark 4. It is not necessary to require all the points of the non-special effective
divisor D of degree g to be distinct. Theorem 4 and all the other results in this
paper can easily be modified to include divisors with multiple points.

A differential w of the second kind is said to have zero a-periods if
(w,w;)x =0, i=1,...,9.

It follows from Theorem 4 that a differential of the first kind with zero a-periods is
zero. The vector space Qéznd) of differentials of the second kind with zero a-periods

has the following properties.

Proposition 1. (i) The k-vector space Q(()Qnd) is an isotropic complement of Q(1st)

in Q@D gnd
QéQHd) =k-w ® Dk w, ®dF.
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(ii) For every P € X, the k-vector space Qo(xP) of differentials of the second
kind with zero a-periods and the only pole at P has a natural filtration

{0} = Qo(P) C Qo(2P) -+ C Qo(nP) C -+,
dimy, Qo(nP) =n — 1.

(iil) There is a direct sum decomposition

Q(()2nd) _ @ QO(*P)~

PeX

(iv) Buvery differential w € Qo(nP) can be written uniquely as

w = dericiwi,

i=1
where f € H*(X,Ox(D + (n — 1)P)).

Proof. Part (i) follows from Theorem 4 because D is non-special.  Since
dimy, Q}/k(nP) =n—1+g, part (ii) follows from the decomposition

2} (nP) = Qo) © A0
Part (iii) follows from part (ii) because every differential w € Q(()Qnd) can be written
uniquely as the sum of its principal parts at the poles. Since the divisor D =
Py + -+ P, is non-special, we have h°(D + (n — 1)P) = n, and part (iv) also
follows from Theorem 4. [J

Definition 1. A space of additive multi-valued functions on X (additive functions
for brevity) is a subspace A(X) C Ax with the following properties.

AF1) F C A(X).

AF2) If a € A(X), then da = w € Qp, (and hence w € Q2nd)y,

AF3) If a € A(X) and da = 0, then a = ¢ € k.

Remark 5. For every differential w € Q¥ the corresponding adele a =
{ap}pex = d~'w is determined uniquely up to the choice of additive constants
for every P € X. Condition AF3) guarantees that for all f € F these constants are
compatible with the equation f = d=1(df) + ¢, where ¢ € k.

Example 1. Given any non-special effective divisor D = P; + - - + P, of degree g
on X with distinct points P; and any choice of the local uniformizers ¢; at P;, we
have the following space A(X; D) of additive functions with zero a-periods. Let
1; € Ax be solutions of the equations

d’rli:wh izla"'agv

with any fixed choice of the additive constants at all points P € X. Since the
divisor D is non-special, the subspaces k-1 @ --- @ k-1 and F of the k-vector
space A x have zero intersection. Their direct sum

AX;D)=k-m®---®k-n,®F C Ax (6)
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possesses properties AF1)-AF3) and the map d: A(X; D) — Q((Jznd) is surjective.

Indeed, by Proposition 1 every differential w € Qé%d) can be written uniquely in
the form

g
w=df + Z CiWi, (7)

i=1

whence

g
a=d'w=f+>» cni+ce AX;D). (8)

i=1

Remark 6. The additive functions a = d~'w € A(X, D) are algebraic analogues of
Abelian integrals of the second kind with zero a-periods on a compact Riemann
surface of genus g (see, for example, [8], Ch.V, §2). We can define

/Qw:a@) —a(P),

P
where a(P) =ap mod p € k for all P € X.

It is remarkable that using the additive functions in Example 1, one can naturally
define the uniformizers tp at all points P € X. They are uniquely determined by
the following data: a choice of a non-special divisor D = P; + - - - 4+ P, with distinct
points, uniformizers ¢; at F; and additive functions n,...,n,. For every P € X

let wg) € Qo(2P) be the unique differential of the second kind with the only

second-order pole at P and zero a-periods such that

0 2
(Gi,wP )X = ]. (9)

=1

?

In particular, wg) =w; fori=1,...,9. Let np = dilwg) € A(X;D) be an
additive function with the only simple pole at P € X. By (8), np is uniquely
determined up to an overall additive constant. We fix this constant by requiring
that the sum of the constant terms of T]P|Pi € k((t;)) over all i =1,...,¢g be equal
to zero. In particular, np, = n; + ¢; for some ¢; € k. For every P € X we now
define the uniformizer ¢p by the formula

(2)

and for wy’ = dnp we have

W], =t dtp,  PeX.

Extending this construction, we now endow the subspace Qo (xP) for every P € X

(n+1)
P

with a basis {w 159, consisting of differentials of the second kind with the only

pole at P of order n+ 1 and zero a-periods, where the differentials wg) are already

specified by (9). Let 7\ = d=1w{"™) € A(X; D) be an additive function with the



392 L. A. Takhtajan

only pole at P € X of order n and with the following choice of the overall additive

constant in (8). We put ng) = np and require the constant term of nggn) ’P € k((tp))

to be equal to zero for all n( ") with n > 1. For every P € X let Ap(X, D) be the

k-linear span of 771(,, ), n € N. Then we have a decomposition

— < D AP(X,D)> @ k. (10)

pPeX

One can restate the property of isotropy of the subspace Q(()Qnd) = dA(X; D) and
the condition AF3) in the following way.

Lemma 1. (i) For all P,Q € X and m,n € N we have
Resp(ng" dng) = Resq(ns dns™).
(ii) Ewvery rational function f € F has a unique ‘partial-fraction expansion’
l n;
=3 Sl e

i=1 j=1
where n1Q1 + -+ - + Q= (f)oo is the polar divisor of f and c,c;j € k.
Proof. Since Resg(da) = 0 for all a € Ax, we get, for P # Q,

0= (g™, w5 ) x = Resp(nVdn$”) + Resq (i dn)

_ReSP(nP )an ) — Resg(n n)dn(m))

For P = @ we have 0 = (w}mﬂ),w}nﬂ)) ResP(nP dr](”)) for all m,n € N.
Part (ii) follows directly from AF3) since there are ¢;; € k such that

df — ZZCU g eafnat = 0. O

i=1 j=1

Remark 7. Part (i) of Lemma 1 is an algebraic analogue of the classical reciprocity
law for differentials of the second kind with zero a-periods on a compact Riemann
surface (see, for example, [8], Ch.V, §1 and [11], Ch. VI, §3).

Remark 8. In the genus zero case X = P, = kU {oo} we have F = k(z) and

dz

———— for Pe€k,

s ey STES

—2"ldz for P = co.
Correspondingly,

1 for Pek

T

n(z — P)»

e (z) =
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Remark 9. Put Ox = Ax(0) = [[pcx Ox. By Lemma 1 we have
Ax = A(X, Dys) + Ox
while Serre’s adelic interpretation of cohomology yields
Ax/(F +0x)=H'(X,0x).

Remark 10. The condition that the field k£ of constants is algebraically closed is
not necessary: all results in this section remain valid for any field of constants of
characteristic 0 if we replace the field k by the residue class field k(P) =0, /p and
use the trace map Try(py/,: k(P) — k. For example, for the bilinear form (, )x we
have
(whwg)x = Z Trk(p)/k ResP(d_lwl wg).
Pex

Remark 11. The multiplicative analogue of the k-vector space A(X) of additive
multi-valued functions is the group M (X) of multiplicative multi-valued functions
on X. This subgroup of the group of invertible elements of the adele ring Ax is
defined by the following properties. It contains F'* as a subgroup, we have dlogm =
m~tdm =w € Q};/k for allm € M(X), and if m € M(X) satisfies dlogm = 0, then
m = c € k*. It also seems natural to assume (as was done in a preliminary version
of this paper) that the following multiplicative analogue of Lemma 1 holds. Every
rational function f € F* can be written uniquely as a product of multiplicative
multi-valued functions with one zero and one pole obeying the natural generalized
Weil reciprocity law on X (see [1], [17]). However, the referee pointed out that this
assertion contradicts the non-triviality of Poincaré’s bi-extension over the square of
the Jacobian of X [18].

§4. The local theory

Let K be a complete closed field, that is, a complete discrete valuation field with
valuation ring O, maximal ideal p and algebraically closed residue field k = Ok /p.
Every local uniformizer ¢ determines an isomorphism K =~ k((¢)). Therefore K may
be interpreted as a ‘geometric loop algebra’ over k. The main example of a complete
closed field is K = Fp, where P is a point on an algebraic curve X over k.

Here we describe some infinite-dimensional Lie algebras naturally associated
with K and construct their irreducible highest-weight modules. When K = Fp,
these objects determine local quantum field theories at P € X. Specifically, we
consider the following local quantum field theories (QFT):

1) the ‘QFT of additive bosons’, which corresponds to the Heisenberg Lie
algebra g (a one-dimensional central extension of the geometric loop algebra
g[l (K) = K)7

2) the ‘QFT of charged bosons’, which corresponds to the lattice Lie algebra [
associated with the Heisenberg Lie algebra g and the lattice Z.

4.1. The Heisenberg algebra. Let Q}{/k be the K-module of Kahler differ-
entials. We put Q}(/k = Q}(/k/Q, where Q@ = (0,5, p"d(O) (see §2.2). The
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Abelian Lie algebra gly (K) = K over the field k is endowed with a natural bilinear
skew-symmetric form ¢: A2 K — k by the formula

C(fag>:_ReS(fdg>7 f7g€Ka

where dg € ﬁ}( Ik The bilinear form ¢ is continuous with respect to the p-adic topol-

ogy on K and the discrete topology on k. Hence ¢ € H2(K, k) ~ Hom.(A%K, k),
where Hom,(A2K, k) is the group of continuous 2-cocycles on K with values in k.

Definition 2. The Heisenberg Lie algebra g is the one-dimensional central exten-
sion of K
0—-k-C—-g—-K—>0

with the 2-cocycle c.
Writing [, | for the Lie bracket in g = K @ k - C, we have

The Lie subalgebra gy = Og @ k- C' is a maximal Abelian subalgebra of g.

Remark 12. Let Aut O = {u € O: v(u) = 1} be the group of continuous automor-
phisms of the valuation ring @ = k[[t]] (see [14]). One can easily show that every
continuous linear map I: k((t)) ®; k((t)) — k which satisfies

W(fougou)=I(f,g)

for all f,g € k((t)) and v € Aut O is a constant multiple of ¢. This explains the
natural role of the 2-cocycle ¢ of K. In particular, every Aut O-invariant bilinear
form [ is necessarily skew-symmetric. This may be regarded as a simple algebraic
analogue of the spin-statistics theorem.

Definition 3. A module of the Heisenberg algebra g is a k-vector space V' with the
discrete topology and with a k-algebra homomorphism p: g — EndV such that
the corresponding action of g on V is continuous and p(C) = I is the identity
endomorphism of V.

Equivalently, for every v € V there is an open subspace U of K which is com-
mensurable with p and annihilates v: p(U)v = 0. Putting f = p(f) € End V for all
f € K, we have

[f,g] = c(f,9)1
and thus obtain a projective representation of the Abelian Lie algebra K.

Remark 13. Any choice of the uniformizer ¢ for K determines an isomorphism K ~
k((t)) and a basis {t"},cz in K. Putting e, = p(t") and using the formulae
c(t™,t") = My, —n, we get the commutation relations of the ‘oscillator algebra’,

(O, 0] = MOy, L.

They characterize free bosons in the two-dimensional QFT.
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Definition 4. An irreducible highest-weight module of the Heisenberg algebra g is
an irreducible g-module with a vector 1 € V which is annihilated by the Abelian
subalgebra Ok @ {0}.

The following result is well known (see, for example, [13], Lemma 9.13).

Theorem 5. Each irreducible highest-weight module of the Heisenberg Lie alge-
bra g is either the trivial one-dimensional module k = k -1 with highest vector
1=1¢€k, or the Fock module

F = indg+ k

induced from the one-dimensional g4 -module k.

Remark 14. Let Ug be the universal enveloping algebra of the Lie algebra g. By
definition,
F =Ug Qug, k,

where Ug is regarded as a right Ug,-module. Equivalently,
F=W|, (11)

where # is the Weyl algebra of g, that is, the quotient of Ug by the ideal generated
by C' — 1 (with 1 now standing for the identity in Ug) and & is the left ideal in #
generated by Og ¢ {0}.

An explicit realization of the Fock module .% (the bosonic Fock space) depends
on a decomposition of K into a direct sum of subspaces isotropic with respect to
the bilinear form c:

K=K, ®K_, (12)

where the subspace Ky = Ok is defined canonically. In this case,
F ~Sym®* K_ (13)

is the symmetric algebra of the k-vector space K_. The Fock space % is a Z-graded
commutative algebra

oo
YD)
n=0

where .ZF(™ ~ Sym" K_, .F© = k.1 and F™ = {0} for n < 0. For every
f=f++ f- € K, the operator f = p(f) € End Z is defined by the formula

k k
fro=Ff ovtd cfiv)v'=f @v—> Res(fdv)o, (14)

i=1 i=1

where v = v, 0---Ouy € ZH® and v! = 110 --OG;E---Ou, € FED 1 =1,... k.
Here ® stands for the multiplication in Sym® K_. In particular,

f1=f_.

The Fock space .# is endowed with the linear topology given by the filtration
associated with the Z-grading and independent of the decomposition (12).
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Remark 15. Any choice of the uniformizer ¢ determines an isomorphism K ~ k((t)),
and one can take K_ =t~ 1k[t~!]. The map

FM 5p=tT" 0 Ot Ly, - T, € kX1, T, .. ]

determines an isomorphism % =~ k[x1,z9,...] between the bosonic Fock space
and the polynomial ring in infinitely many variables {z, },cn. Under this map we
have o, — nd/0xy,, a_p — x,, n > 0 (the operator of multiplication by ),
and ag — 0.

Remark 16. For an arbitrary complete closed field K there is no canonical choice
of the isotropic subspace K_ complementary to Ky = Ok. However, any choice of
an effective non-special divisor D = P, +- - -+ P, of degree g on the algebraic curve X
and uniformizers ¢; at P, determines such isotropic subspaces K_ for all fields
K = Fp, P € X. Namely, let A(X, D) be the k-vector space of additive functions
defined in Example 1, and let Ap (X, D) be the subspace of additive functions with
the only pole at P. We put

K_=Ap(X,D)|, CK.

By part (i) of Lemma 1, the subspace K _ is isotropic with respect to ¢ and we have

the decomposition (12). The subspace K _ is spanned by the elements vJ(Pn) = nj(pn

neN, and dK_ = Qo(*P)|p~

e

The bilinear form ¢ has the one-dimensional kernel k. Since Ok /k = p, the
form ¢ determines a continuous non-degenerate pairing c: p ® K_ — k, whence
p = KY = Hom(K_,k) is the topological dual of the k-vector space K_. The
topological dual of the bosonic Fock space .# is accordingly equal to the k-vector
space . = Sym® p which is the completion of Sym® p with respect to the linear
topology given by the filtration {F™ Sym® p}52 ,

F"Sym®p = @Symip.

=0

The continuous pairing ( , ): #¥ ® % — k is uniquely determined by the pairing
between Sym® p and .# = Sym® K_ and is defined recursively by the formula

l

(u,v) = 0 Y _ e(u, vi)(u', v'), (15)

i=1

where u =41 ®---Qup =uy Ou' € Symkp andv=v10---Qu=v;00" € FWO,
The dual bosonic Fock space # " is a right g-module with lowest-weight vector 1Y
annihilated by the subspace K_ @ k.

The representation p of the Heisenberg algebra g on .# determines a contra-
gradient representation p¥ of the Heisenberg algebra g on .#" by the formula

(w-p"(f),0) = (u,p(f)-v)  VueF' veF.
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More explicitly, put f = ﬁ_ + f_ € K, where now ﬁ_ € p and f_ € K_ @ k. Then
it follows from (14) and (15) that the operator f = pV(f) € End.Z" is given by

k k

u-f=fou+ ZC(W, Hul=frou+ ZRes(f,dui)ui, (16)
i=1 i=1
where v = u1 @ -+ Qup € Sym*pand v’ =u; ©--- O U O --- O ug € Sym" ! p.

4.2. The lattice algebra. Let k[Z] be the group algebra of the additive group Z.
As a k-vector space, k[Z] has a basis {en tnez, €men = €min. For every decompo-
sition (12) we define the ‘constant term’ of any f € K as f(0) = f+ mod p € k.
Hence we have f(0) =0 for f € K_.

Remark 17. If K = Fp and K_ = AP(X,D)|P, then f(0) is the constant term of
the formal Laurent expansion of f € k((tp)) with respect to the uniformizer ¢p
of K, defined in §3.1.

Definition 5. The lattice Lie algebra [ associated with the decomposition (12) is
a semidirect sum of the Heisenberg Lie algebra g and the Abelian Lie algebra k|[Z]
with the Lie bracket

[f + aC + aen, g + bC + Bey,] = c(f,9)C + mag(0)e,, —nBf(0)en,

where f + aC, g+ bC € g.

The corresponding irreducible highest-weight module £ of [ is given by
B =klZl @ F,
where k[Z] acts by multiplication and K acts by the formula
fle, ®v) = —nf(0)e, @v+e,Q(f v), feEK, veZF.

The module # (the Fock space of ‘charged bosons’) is a Z-graded commutative
algebra,

B=PB", B =k, 27

neZ

The elements e,, n € Z, correspond to the shift operators e, = €™ in %, where

ele, ®v) =epy1 O, vEZF.

Remark 18. Using the canonical isomorphism K*/O% ~ Z induced by the valua-
tion v: K* — Z, one can also define the Fock space % as the space of all functions

F:K*)O} — F

with finite support.
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Remark 19. For every choice of uniformizer ¢ for K, the map
B 35 e, @ T OOt o €0y, Ty, € €770k [my, 20, . . ]

establishes an isomorphism B ~ k[e*®, e~ x1,x,...]. Under this map we have
a, — nd/0x,, a_, — x,, n >0, ag— —0/0x9 and e — e*° (the operator
of multiplication by e®°).

The topological dual of £ is the k-vector space

B =Pk-q" e F,
nez

where {q"}nez is the basis in k[Z]Y dual to the basis {e,}necz. The continuous
pairing (, ): BY ® & — k is given by

(@™ R u,e, @v) = (U, V)dpmn, ueZFY, vegF.

As for the Heisenberg algebra, the representation p of the lattice algebra [ on %
determines a contragradient representation p¥ on %Y. The dual Fock space #" is
a right [-module with lowest-weight vector 1V annihilated by K_.

§ 5. The global theory

Given an algebraic curve X over an algebraically closed field k of characteristic 0,
we shall define the global versions of the local QFT’s introduced in §4. One can
briefly characterize these global QFT’s as follows.

1. The ‘QFT of additive bosons on X’ corresponds to the global Heisenberg
algebra gx (the restricted direct sum of the local Heisenberg algebras gp over all
points P € X). The global Fock space Fx is defined as the restricted tensor
product of the local Fock spaces .#p over all points P € X. The global Fock space
Fx is a highest-weight gx-module. There is a linear functional (-): Fx — k (the
expectation value functional) which is uniquely determined by the properties of
normalization and invariance with respect to the space of additive functions.

2. The ‘QFT of charged bosons on X’ corresponds to the global lattice alge-
bra [x. The global charged Fock space %x is a highest-weight [x-module and
there is a unique expectation value functional (-): Zx — k with similar proper-
ties.

5.1. Additive bosons on X. The QFT of additive bosons consists of the fol-
lowing data.

ABI1) An effective non-special divisor Dy, = P; +- - - + Py of degree g on X with
distinct points, uniformizers ¢; at P; and the k-vector space A(X, Dys) of additive
functions (a subspace of Ax containing F' = k(X)) introduced in Example 1.

AB2) The local QFT’s of additive bosons (the highest-weight gp-modules .Zp
for all points P € X).

AB3) The global Heisenberg algebra gx (the one-dimensional central extension
of the Abelian Lie algebra gl; (Ax) = Ax by the cocycle cx =) pc x cp).

AB4) A highest-weight gx-module (the global Fock space Fx, which is the
restricted tensor product of Fp over all points P € X).
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AB5) An expectation value functional, that is, a linear map (-): Fx — k with
the following properties:

(i) (1x) =1, where 1x € Fx is the highest-weight vector,

(i) (a-v) =0 for all a € A(X, Dys) and v € Fx.

The data AB1) and AB2) have already been described in §§3.1 and 4.1. Here
we introduce the global Heisenberg algebra gx, construct the corresponding global
Fock space .Zx and prove that there is a unique expectation value functional (- )
with properties (i) and (ii).

Let cx: Ax x Ax — k be the global bilinear form

ex(z,y) = Z cp(zp,yp) = — Z Resp(zp dyp), T,y € Ax.
Pex Pex

Definition 6. The global Heisenberg Lie algebra gx is the one-dimensional central
extension of the Abelian Lie algebra Ax

0—-kC—gx Ax —0

by the 2-cocycle cx.
The Lie subalgebra g = Ox ® kC is the maximal Abelian subalgebra of gx.

Definition 7. The global Fock space Fx is an irreducible gx-module with vec-
tor 1x annihilated by the Abelian subalgebra Ox & {0}.

As in the local case, the global Fock module is induced from the one-dimensional
g-module:
gZX = indgf k.
9x
By what was said in §4, we have a decomposition (12) for K = Fp, P € X, where
FI(;F) = Op and FI(;) = Ap(X, D)|P. This yields the following decomposition of
the k-vector space Ax into a direct sum of subspaces isotropic with respect to cx:

Ax =0x & F{). (17)
Here - -
7' =1] Fp
PeX

is the restricted direct product over all P € X with respect to the zero subspaces
{0} C F }(;). The decomposition (17) gives rise to an isomorphism

Fx ~ Sym® ]-“)((_).

The global Fock space .%x carries a linear topology given by the natural filtration
associated with the Z-grading.
Equivalently, .#x may be defined as the tensor product

—_—
Fx = Q) Fp,
pPeX
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which is restricted with respect to the vectors 1p € %p and is endowed with
the product topology. In other words, 1x = @ pcx 1p, and Fx is spanned by the

vectors
=@
PeX

where vp = 1p for all but finitely many P € X. For every P € X we have v =
vp @ vF, where v¥ = ®Q€X vQ, Vg = vg for Q # P and vp = 1p. We denote the
corresponding representation of gp on %p, P € X, by pp, and the representation
of gx on Fx by p. Putting x = p(x) € End ¥x for x = {zp}pcx € Ax and
taking any v = @ p. x vp, we have

XU = g Xp-Up@UP,
PeX

where xp = pp(xp) € End Fp.
Put

Bx= [ »

PeX

The topological dual of the global Fock space Zx is the k-vector space .Fy =
Sym® Bx, which is the completion of Sym® P x with respect to the linear topology
given by the natural filtration associated with the Z-grading. The dual global Fock
space Zy is a right gx-module with lowest-weight vector 1Y% annihilated by the

Abelian subalgebra F )((_) @ {0}. Equivalently,
Ty = QT
pPeX

is the completion of the tensor product restricted with respect to the vectors 1}.
The completion is taken with respect to the double filtration {F™" Sym® Px},
where

F™™ Sym® Px = Z Z ( @ Sym'' p; @ -+ ® Sym" pl).

i=0 Pp,..,P;€X Nlq+-tl;=0

In other words, the elements of .#Y are infinite formal sums

oo
u = E apl...Pnupl...Pn)
n=0 Pi,...,P,€X

where the up,._p, belong to the completion #V p, p, of the tensor product
Tp.p, =Tp QTP

with respect to the filtration

m

7y = D Sym“p1®---®syml”pn)'
L4l =0
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Let {uP }nen be the basis of p dual to the basis {UP = 77P ’P}neN of FI(;) with
respect to the pairing given by cp (see §4.1). Then we see that .# is the completion

of the space k[[u’p]] of formal Taylor series in infinitely many Varlables ugp ). PeX,

n € N. This realization of .Zy is used to prove the following main result in the
QFT of additive bosons.

Theorem 6. There is a unique linear functional (-): Fx — k (the expectation
value functional) with the following properties:

EV1) (1x) = 1,

EV2) (a-v) =0 for all a € A(X,Dys) and v € Fx.

The functional () is given by

<U> = (QX’ U)7

where

QX_eXp{_ Z Tl (n)} c 7V,

m,n=1 P,QeX
(mn)

b = —Resq (" dngy”).

Proof. It follows from the decomposition (10) that a linear functional of the form
(v) = (Q,v) possesses properties EV1) and EV2) if and only if it is normalized,
(Q,1x) =1, and € .F satisfies the system of equations

Q-nlM =0 (18)

for all P € X and n € N, where ngl) = pv(ngl)). Write ngpn) = (n) + ’yp , where
;;n) = {Bl(f’nC)Q}QeX and 7}”) = {’Ygg}QeX € Ax are given by

g _ o) if Q=P L ne|, if Q=P
PO ml, AP T o it Q4P

It follows from (16) that ’71(;1) acts on .#y as differentiation with respect to ugf).

For @ # P we have
Brg = abo + Z apg ug”

where agg € k and

n'rn) (ﬁgg, (7n)) — _Res ( (n)d77 )) _ Cg;lgL)'

(nm) _ (n)

Since ¢pp’ = 0 (see Lemma 1), we conclude that 35 acts on .#y as multiplication

by > oex c]f.gn)ugn) One can rewrite the equations (18) in the form

<8 (n Z ggn)ugn)> =0, PeX, neNl (19)
QeX
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It follows from part (i) of Lemma 1 that
ngnzgn) _ C(Qn;l),
whence the system of differential equations (19) is compatible and Qx is its unique
normalized solution. [J

Remark 20. Let g be a semisimple Lie algebra over k with the Cartan—Killing
form (, ). Then the k-vector space Ax with bilinear form cx may be replaced by
the k-vector space Vx =g ®;, Ax with bilinear form — .« Resp(zp,dyp). The-
orem 6 extends to this case. The additive Ward identities hold for g ®j A(X, Dys)
and the corresponding QFT is associated with the current algebra on X in the
sense of [6].

5.2. Charged additive bosons on X. The QFT of charged additive bosons is
determined by the following data.

CB1) An effective non-special divisor Dys = P; + - - -+ Py of degree g on X with
distinct points, uniformizers ¢; at P; and the k-vector space A(X, Dys) of additive
functions (a subspace of Ax containing F' = k(X)) introduced in Example 1.

CB2) The local QFT’s of charged additive bosons (the highest-weight [p-modules
Pp for all points P € X).

CB3) The global lattice algebra [x (a semidirect sum of the global Heisen-
berg algebra gx and the Abelian Lie algebra k[Divo(X)] with generators ep,
D € Divy(X), where k[Divo(X)] is the group algebra of the additive group Divy(X)
of divisors of degree 0 on X).

CB4) A highest-weight [x-module (the global Fock space #x with highest-
weight vector 1x € $Bx).

CB5) An expectation value functional, that is, a linear map (-): Zx — k with
the following properties:

(i) (ep-1x) =1 for all D € Divy(X),

(ii) (a-u) =0 for all a € A(X,Dys) and u € Bx.

As a k-vector space, the group algebra k[Divo(X)] has a basis {€p}pepivy(x);
ep,ep, = €p,+p,. For every x = {xp} € Ax and D =),y np, P € Divo(X),
we put

xz(D) = Z npzp(0) € k,

where zp(0) = 25, mod p € k is the constant term of zp € Fp (it is determined
by the decomposition (12) associated with the non-special divisor Dyg; see §4.2).

Definition 8. The global lattice algebra lx is the semidirect sum of the global
Heisenberg algebra gx and the Abelian Lie algebra k[Divo(X)] with Lie bracket

[:C +aC + Yep,,Y + ﬂC + 66D2] = CX(‘T7y)C + y(Dl),yeDl - ‘T(DQ)(SeDm
where x + aC,y + 8C € gx and 7,0 € k.

The global Fock space Zx is the tensor product of the group algebra k[Divy(X)]
and the Fock space Zx of additive bosons:

Bx =kDivo(X)| 0 Fx = @ 2%,

DEDivo(X)
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where B2 =k-ep ® Fx. PBx is an irreducible [x-module where k[Divo(X)] acts
by multiplication:

ep,(ep, ®v) =€p,4+p, ®V, v E Fx, (20)
and A x acts by the formula
x(ep ®v) = —x(D)ep ®v+ep @ (x-v), x€Ax, veEFx. (21)

For every D = ) p.yxnp P € Divo(X), the subspace %;)1? is an irreducible gx-
module with the following property. If x = {xp}pex € Ax with zp € k for
all P € X, then the restriction of the operator x to %% is equal to —z(D)I,
where I is the identity operator. In particular, when & = ¢ is a constant, we have
z(D) = cdeg D = 0 and x acts by zero on HBx.

Remark 21. One can also define an extended lattice algebra TX as a semidirect sum
of the global Heisenberg algebra gx and the Abelian Lie algebra k[Div(X)]. The
corresponding irreducible [x-module is the extended Fock space

#x =kDiv(X)|® Fx = P 2%
DeDiv(X)

The action of [y on %y is given by the same formulae (20), (21), where now the
constant adele z = ¢ acts on B% as (cdeg D)L

The dual Fock space Y is defined as a completion of the direct sum of the dual
spaces to % over D € Divg(X). This completion is given by formal infinite series.
Explicitly,

B = P 2BYWD),

DEDivo(X)
where
qP € k[Divo(X)]Y is dual to ep, and .y was defined in §5.1.

Theorem 7. There is a unique linear functional (-): Bx — k (the expectation
value functional) with the following properties:

EV1) {(ep -1x) =1 for all D € Divy(X),

EV2) (a-v) =0 for all a € A(X, Dys) and v € Bx.

The functional {-) is given by

(v) = (Qx,0),

where

Ox = Z q” ®exp{i Z n;")(D)ugL)}QX € By

DeDivg(X) n=1 PeX

and Qx is defined in Theorem 6.
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Proof. We put
Q= Z qD®QD, Qp € .Fy

DeDive(X)

The condition (Q,ep ® 1x) = 1 for all D € Divy(X) is equivalent to the normal-
ization (Q2p,1x)=1. Since the constants act by 0 on By, it suffices to verify that

(q” ©Qp) -8 =0 (22)
for all D =} 5 x nq @ € Divo(X) and P € X. Since
2 0™ = (D Yy nQnm) 0) 4P
Qex

(note that n(n) ‘P(O) = 0 by the definition in § 4.2), we see from (22) that Qp satisfies
the following system of differential equations:

( Z nQn(n) + Z cggn)ugn))QD =0
P

Qex QeX

This system has the unique normalized solution

Qp = exp{ Z Z ngl)(D)uE,f) — % Z Z cg'zg")up u(")}. O

n=1 PeX m,n=1 P,QeX

Remark 22. Theorems 6, 7 hold for an arbitrary field k of constants of characteris-
tic 0 (see Remark 10).

Remark 23. All results in this section hold trivially in the case when X has genus 0.
Using Remark 8, one can easily obtain elementary explicit formulae for the expec-
tation value functional (-) for quantum additive and charged bosons on P}.

5.3. Invariant formulation. Here we present an invariant formulation and
a proof of a generalization of Theorem 6 for the current algebra. They were sug-
gested by the referee. Let V be a k-vector space regarded as an Abelian Lie
algebra, and let ¢ be a skew-symmetric bilinear form on V. We write V for the
one-dimensional central extension of V'

0—k-C—V-=V-=0

by the 2-cocycle ¢, and # for the Weyl algebra of the Lie algebra YN/, as in §4.1.
Let U and W be isotropic subspaces of V' with respect to ¢ such that U N W and
V/(U + W) are finite-dimensional and U N W lies in the kernel of c.

Lemma 2. There is a canonical isomorphism of k-vector spaces
W |W-(U+ W)~ Sym® (V/(U + W))

Proof. This is proved by direct calculation in a symplectic basis of V' compatible
with the corresponding bases in U and W. O
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In the notation of Remark 20 we put V =Vx = g ®; Ax,

c(z,y) = — Z Resp(zp,dyp),
Pex

U=g®; F and W = g®; Ox, where F = k(X). Then
WIW W~ Fx

is the Fock space of the current algebra on X. Using Serre’s adelic interpretation
of cohomology in the form

V/(U+W)~gep H(X,0x),
we obtain from Lemma 2 that
Fx/(g® F) - Fx ~Sym®(g@r H' (X, Ox)).

This shows that the global symmetries g ® F' do not uniquely determine the expec-
tation value functional (-) except in the case when X = P}.

To extend the Lie algebra of global symmetries, we consider a Lagrangian sub-
space L C Hip(X) ~ Q"D /dF such that the restriction to L of the natural map
Hiz(X) — HY(X,Ox) is an isomorphism. For example, take L = k-wq &+ - Bk w,
(see Theorem 4). Let L be the inverse image of L under the map Q")) —
Q@) /dF. We claim that there is a subspace Uy C Ay such that

F C Uy, UyNOx =k, dUy = L.

For example, take Uy = A(X, Dys). Then U = g ®; Uy is an isotropic subspace
of V and, by Remark 9, we have

V/(U+ W) ={0}.

Therefore,
gx/U . (g‘\x ~ k,

which is essentially Theorem 6 (without an explicit formula for the vector Qx). By
Remark 10, the condition that the field k& is algebraically closed is not necessary.
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